반응형
$X_1,\, \cdots ,X_n$을 평균 $\mu$, 분산 $\sigma^2$인 정규분포 $N(\mu,\, \sigma^2)$에서 추출한 n개의 랜덤표본이라 하면,
이다. 이 때,
이다. 그리고,
이 때, $S_n^2\, =\, \frac{\sum_{i=1}^{n}(X_i-\overline{X_n})}{n-1}$에서 $ S_n^2 $은 $ X_i-\overline{X_n} $들만의 함수이므로, 표본평균 $\overline{X_n}$과 표본분산 $S_n^2$은 서로 독립이다.
반응형
'각종공부 > 통계' 카테고리의 다른 글
정규분포에서 {(n-1)X표본분산/분산}의 값이 자유도 (n-1)인 카이제곱분포를 따르는 이유 (0) | 2020.07.28 |
---|---|
체비셰프 부등식의 증명 (마코프 확률부등식을 이용) (0) | 2020.07.24 |
중심극한정리 증명 - 적률생성함수, 테일러급수만 알면 끝! (1) | 2020.07.12 |
선형결합된 확률변수의 적률생성함수는 어떤 모양을 가질까? (0) | 2020.06.30 |
예제로 알아보는 적률생성함수(Moment Generating Function) (0) | 2020.06.29 |
댓글