정규분포에서 {(n-1)X표본분산/분산}의 값이 자유도 (n-1)인 카이제곱분포를 따르는 이유
정규분포, 서로독립, 적률생성함수의 개념을 알면 증명은 간단합니다. 아래 링크를 보고 오시면 더욱 쉽게 이해 가능합니다. https://eclipse360.tistory.com/44 정규분포에서 표본평균과 표본분산의 독립성 증명 $X_1,\, \cdots ,X_n$을 평균 $\mu$, 분산 $\sigma^2$인 정규분포 $N(\mu,\, \sigma^2)$에서 추출한 n개의 랜덤표본이라 하면, 이다. 이 때, 이다. 그리고, 이 때, $S_n^2\, =\, \frac{\sum_{i=1}^{n}(X_i.. eclipse360.tistory.com
2020. 7. 28.
정규분포에서 표본평균과 표본분산의 독립성 증명
$X_1,\, \cdots ,X_n$을 평균 $\mu$, 분산 $\sigma^2$인 정규분포 $N(\mu,\, \sigma^2)$에서 추출한 n개의 랜덤표본이라 하면, 이다. 이 때, 이다. 그리고, 이 때, $S_n^2\, =\, \frac{\sum_{i=1}^{n}(X_i-\overline{X_n})}{n-1}$에서 $ S_n^2 $은 $ X_i-\overline{X_n} $들만의 함수이므로, 표본평균 $\overline{X_n}$과 표본분산 $S_n^2$은 서로 독립이다.
2020. 7. 28.
중심극한정리 증명 - 적률생성함수, 테일러급수만 알면 끝!
○ 중심극한정리란? $\overline{x}$는 유한한 평균 $\mu$와 유한한 양의 분산 $\sigma ^2$을 갖는 분포에서 추출한 크기가 n인 확률표본 $X_{1},\, \cdots ,\, X_{n}$의 평균이라 하면 $W\, =\, \frac{\overline{X}-\mu }{\frac{\sigma }{\sqrt{n}}}\, =\, \frac{\sum_{i=1}^{n}X_{i}\, -\, n\mu }{\sqrt{n}\sigma }$의 분포는 $n \to \infty $일 때 근사적으로 N(0, 1)이 된다. ○ 증명 ※ 사전지식 ① 예제로 알아보는 적률생성함수(Moment Generating Function, mgt) 게시글 https://eclipse360.tistory.com/38 예제로 알아..
2020. 7. 12.