반응형
○ 중심극한정리란?
$\overline{x}$는 유한한 평균 $\mu$와 유한한 양의 분산 $\sigma ^2$을 갖는 분포에서 추출한 크기가 n인 확률표본 $X_{1},\, \cdots ,\, X_{n}$의 평균이라 하면
$W\, =\, \frac{\overline{X}-\mu }{\frac{\sigma }{\sqrt{n}}}\, =\, \frac{\sum_{i=1}^{n}X_{i}\, -\, n\mu }{\sqrt{n}\sigma }$의 분포는 $n \to \infty $일 때 근사적으로 N(0, 1)이 된다.
○ 증명
※ 사전지식
① 예제로 알아보는 적률생성함수(Moment Generating Function, mgt) 게시글
https://eclipse360.tistory.com/38
② 선형결합된 확률변수의 적률생성함수는 어떤 모양을 가질까?
https://eclipse360.tistory.com/39
따라서,
$W\, =\, \frac{\overline{X}-\mu }{\frac{\sigma }{\sqrt{n}}}\, =\, \frac{\sum_{i=1}^{n}X_{i}\, -\, n\mu }{\sqrt{n}\sigma }$ 의 극한분포는 평균 0, 분산 1인 정규분포를 따른다.
반응형
'각종공부 > 통계' 카테고리의 다른 글
정규분포에서 표본평균과 표본분산의 독립성 증명 (1) | 2020.07.28 |
---|---|
체비셰프 부등식의 증명 (마코프 확률부등식을 이용) (0) | 2020.07.24 |
선형결합된 확률변수의 적률생성함수는 어떤 모양을 가질까? (0) | 2020.06.30 |
예제로 알아보는 적률생성함수(Moment Generating Function) (0) | 2020.06.29 |
표본분산 공식에서 n 대신 n-1을 사용하는 이유 (0) | 2020.06.13 |
댓글