반응형 적률생성함수4 정규분포에서 {(n-1)X표본분산/분산}의 값이 자유도 (n-1)인 카이제곱분포를 따르는 이유 정규분포, 서로독립, 적률생성함수의 개념을 알면 증명은 간단합니다. 아래 링크를 보고 오시면 더욱 쉽게 이해 가능합니다. https://eclipse360.tistory.com/44 정규분포에서 표본평균과 표본분산의 독립성 증명 X1,⋯,Xn을 평균 μ, 분산 σ2인 정규분포 N(μ,σ2)에서 추출한 n개의 랜덤표본이라 하면, 이다. 이 때, 이다. 그리고, 이 때, $S_n^2\, =\, \frac{\sum_{i=1}^{n}(X_i.. eclipse360.tistory.com 2020. 7. 28. 중심극한정리 증명 - 적률생성함수, 테일러급수만 알면 끝! ○ 중심극한정리란? ¯x는 유한한 평균 μ와 유한한 양의 분산 σ2을 갖는 분포에서 추출한 크기가 n인 확률표본 X1,⋯,Xn의 평균이라 하면 W=¯X−μσ√n=∑ni=1Xi−nμ√nσ의 분포는 n→∞일 때 근사적으로 N(0, 1)이 된다. ○ 증명 ※ 사전지식 ① 예제로 알아보는 적률생성함수(Moment Generating Function, mgt) 게시글 https://eclipse360.tistory.com/38 예제로 알아.. 2020. 7. 12. 선형결합된 확률변수의 적률생성함수는 어떤 모양을 가질까? ○ 선형결합된 확률변수의 적률생성함수(Moment Generating Function, mgf) ○ Y=∑ni=1Xi(x의 합), ¯X=1n∑ni=1Xi(x의 평균)의 적률생성함수(Moment Generating Function, mgf) ○ 예제 1) 베르누이분포 선형결합 → 이항분포의 적률생성함수 ○ 예제 2) 지수분포 선형결합 → 감마분포의 적률생성함수 ○ 예제 3) 카이제곱분포의 적률생성함수 ○ 예제 4) 표준정규분포에서의 적률생성함수 2020. 6. 30. 예제로 알아보는 적률생성함수(Moment Generating Function) ○ 적률생성함수(Moment Generating Function, mgf, M(t))를 쓰는 이유 → 어떤 분포들은 평균과 분산을 구하기 위해 직접 E(X)와 E(X2)를 계산하기 어렵다. 이 경우 적률생성함수는 평균과 분산을 구하기 위한 좋은 방법이 된다. → 적률생성함수는 적률을 생성하는 것 이외에도 '유일성'을 지닌다. 다시말해, 적률생성함수는 확률변수의 분포를 유일하게 결정한다.(mgf가 존재하면, mgf에 대응되는 오직 하나의 확률분포가 존재한다.) → 중심극한정리(Central Limit Theorem) 증명의 핵심 도구이다. ○ 적률생성함수 정의 ○ 적률생성함수 예제1 ○ 적률생섬함수 예제2 : 기하분포인 경우 2020. 6. 29. 이전 1 다음 반응형